
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
JAtlasView: a Java atlas-viewer for browsing biomedical 3D images
and atlases
Guangjie Feng1, Nick Burton1, Bill Hill1, Duncan Davidson1, Janet Kerwin2,
Mark Scott2, Susan Lindsay2 and Richard Baldock*1

Address: 1MRC Human Genetics Unit, Western General Hospital, Crewe Road, EH4 2XU, Edinburgh, UK and 2The Institute of Human Genetics,
University of Newcastle, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK

Email: Guangjie Feng - Guangjie.Feng@hgu.mrc.ac.uk; Nick Burton - Nicholas.Burton@hgu.mrc.ac.uk; Bill Hill - Bill.Hill@hgu.mrc.ac.uk;
Duncan Davidson - Duncan.Davidson@hgu.mrc.ac.uk; Janet Kerwin - J.M.Kerwin@ncl.ac.uk; Mark Scott - M.K.Scott@ncl.ac.uk;
Susan Lindsay - S.Lindsay@newcastle.ac.uk; Richard Baldock* - Richard.Baldock@hgu.mrc.ac.uk

* Corresponding author

Abstract
Background: Many three-dimensional (3D) images are routinely collected in biomedical research
and a number of digital atlases with associated anatomical and other information have been
published. A number of tools are available for viewing this data ranging from commercial
visualization packages to freely available, typically system architecture dependent, solutions. Here
we discuss an atlas viewer implemented to run on any workstation using the architecture neutral
Java programming language.

Results: We report the development of a freely available Java based viewer for 3D image data,
descibe the structure and functionality of the viewer and how automated tools can be developed
to manage the Java Native Interface code. The viewer allows arbitrary re-sectioning of the data and
interactive browsing through the volume. With appropriately formatted data, for example as
provided for the Electronic Atlas of the Developing Human Brain, a 3D surface view and anatomical
browsing is available. The interface is developed in Java with Java3D providing the 3D rendering.
For efficiency the image data is manipulated using the Woolz image-processing library provided as
a dynamically linked module for each machine architecture.

Conclusion: We conclude that Java provides an appropriate environment for efficient
development of these tools and techniques exist to allow computationally efficient image-
processing libraries to be integrated relatively easily.

Background
Three-dimensional (3D) images are now commonplace
in biomedical research. Techniques for direct capture of
3D data are widespread and new techniques are becoming
available, [1,2] to complement existing sectioning meth-
ods [3], confocal and micro-CT/MRI [4]. In addition such
data is being stored in databases that can be accessed

freely (EADHB[5], EMAP[6], BIOIMAGE[7], and
MRIMA[8]) and many more such atlases and bioinfor-
matics resources will become available. There are a
number of tools available for browsing such data, but they
are either commercial with a significant cost for the user
(e.g. AVS/Express, VolRen, Amira, Analyse) or free but tied
to a specific architecture. Systems based purely on an

Published: 09 March 2005

BMC Bioinformatics 2005, 6:47 doi:10.1186/1471-2105-6-47

Received: 08 September 2004
Accepted: 09 March 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/47

© 2005 Feng et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15757508
http://www.biomedcentral.com/1471-2105/6/47
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:47 http://www.biomedcentral.com/1471-2105/6/47
architecture neutral language such as Java (e.g. ImageJ[9])
can be slow when processing large 3D volume images and
have not been developed with the 3D atlas browsing
application in mind. The purpose of this work is to com-
bine the machine-architecture independence of Java, with
a highly portable, freely available fast and efficient C-
coded image processing library tuned to the requirements
of the atlas browsing and data analysis task. The Java
Atlas-Viewer (JAtlasView) interface has been developed as
a series of modules that can be readily re-used within
other applications to build more complex interfaces. The
Java interface elements and the image processing library
can be downloaded from the EADHB and EMAP web-
sites. 3D images are regularly captured as part of biomed-
ical research. In many fields the most useful and regularly
used visualisation of the grey-level or colour voxel image
is to view sections. These are 2D images generated by dig-
itally cutting throught the volume and mimic the tradi-
tional mechanism of physical microtome sectioning for
revealing detailed structure. The benefit of digital models
is that the sectioning plane, orientation and position, can
be selected arbitrarily to suit the required usage and the
volume can be scanned interactively.

For the expert viewer, digital re-sectioning is sufficient for
data-analysis but for others, panning through the volume
at non-standard angles leads to disorientation. In addi-
tion if used in conjunction with atlas information in
which the histology images are segmented in terms of the
recognisable tissues, the building of a 3D view of the tis-
sue/anatomical components is very difficult, particularly
when learning the anatomy. This orientation and struc-
tural visualisation problem is solved by using 3D visuali-
sation of the underlying tissue coupled with interactive
feedback of the section location within the volume.

The basic structure of the JAtlasView is therefore a combi-
nation of a 3D feedback window with a number of section
views. Each section view is independent and feedback is
provided by displaying the position of the section within
the 3D volume either as a simple polygon indicating the
plane of section or as a full grey-level image, displayed
appropriately in 3D. In addition each section will display
the intersection with all other sections currently being
viewed.

In this short note we describe the structure of the software
and the functionality of the interface. This application is
directed to the use of the EADHB and EMAP atlases and
for browsing 3D grey-level data. In the first instance the
data is formatted as a Woolz image structure [10], tools
are available for data conversion and future versions will
include this as standard.

Implementation
The software design has been developed to meet a number
of code requirements:

• portability to all major architectures – Unix/X11, Micro-
soft Windows and Macintosh,

• fast and efficient image processing, compatible with
existing formats and interfaces,

• freely available code and modular design so display ele-
ments and functionality can be easily included in other
applications and

• the user-interface should be mappable to the "look and
feel" of the specific machine window system.

The portability and user-interface behaviour requirements
are satisfied by using Java as the language and environ-
ment for the user interface level. For image processing we
have adopted the ANSI standard C image processing
library Woolz. This already includes the required func-
tionality for calculating and manipulating section views
through 3D voxel images and is open-source software.

A potential problem with Java is that it can be very ineffi-
cient for heavy numerical work (such as image process-
ing) and the effort required to port existing libraries (for
example Woolz is 185 K lines of code) to Java is too high.
To solve this we use the tools within Java for accessing
"native" code so that the computational work is under-
taken in C. The management and coding of the interface
is potentially time-consuming and prone to error with any
small change in the C code requiring complementary
effort to modify the native interface code. We have
addressed this problem by implementing an automated
method which will build the interface directly from the C-
library header files. By adopting a standard convention for
function prototyping it is possible to use a parser genera-
tor, javacc[11] to build a java program that can analyse the
C-headers and automatically generate the Java class files
and matching C-library files required for the Java native
interface (JNI). This has made it possible to relegate gen-
erating the interface to an automatic process hidden from
the primary code develoment, in fact without this devel-
opment the system would be very difficult to manage.

Two other key choices have been made in the design of the
code structure. The first is that the 3D visualisation and
feedback should be developed at a level independent of
the underlying hardware within an environment that
allows a high level of abstraction of the 3D view. The java
3D extension to the core Java environment provides such
a model and we have adopted this as standard. Java 3D is
available for all Java 2 platforms.
Page 2 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:47 http://www.biomedcentral.com/1471-2105/6/47
The second key choice is that the software will be deliv-
ered using Java Webstart[12]. This is a freely available
application that will download code across the internet
and check system, version and supplementary module
requirements. In addition it will start the application and
maintain a local cached version. The local cache will be
used for fast start if it is the same version as currently avail-
able at source or if the machine is off-line. Source code is
maintained with CVS[13] for version management and
tracking and GNU gmake for compilation. The interfaces
are developed using Borland JBuilder[14] or a standard
editor (vi) and documented using Javadoc/Doxygen[15].

Help is provided in two ways, the first is a simple popup
"balloon" help on mouse-over and as a series of help files
arranged using JavaHelp[16] which provides an indexing,
search and context help facility. The help html files are
generated using DreamWeaver [17] and maintained in a
CVS repository.

Java is now widely used and the first choice for new appli-
cations that require portability across machine architec-
tures. It is a strict object-oriented language and interfaces
adhere to the model-view-controller (MVC) design pattern
[18]. Java also defines a standard under the name java-
bean, that components should meet to guarantee the MVC
behaviour and enable easy re-use in other applications
using CASE tools. We have adopted this standard for the
JAtlasViewer application so that individual interface ele-
ments, e.g. the section panel or even our extended view of
the slider, can be used simply and conveniently in other
code.

Results
The user interface, shown in figure 1, has a primary win-
dow for the 3D view and top-level menu options, and a
number of section-views for visualising the virtual sec-
tions cut through the data. The basic functionality of the
viewer is to allow interactive digital resectioning of a 3D
grey-level or voxel image. The special feature of this viewer
is that any number of section views, each with an inde-
pendent and arbitrary orientation and position can be dis-
played. To aid navigation through the volume a 3D
feedback window is provided. This displays the bounding
box of the 3D volume and a transparent surface, of e.g. the
embryo model. In addition feedback of the current sec-
tion position is provided in a number of selectable
options: an intersecting polygon of the plane with the
bounding box, display of the plane filled with a solid col-
our and display of the image of the section mapped onto
the plane in the 3D view.

With appropriate data, the JAtlasViewer will import a
mapped "anatomy". This is in two parts, a hierarchy of
terms and a set of "domains" linked to specific terms in

the hierarchy. The domains are 3D binary images which
identify the region of space or set of voxels within the
grey-level image associated with that term. The anatomy
will then be used to provide feedback within the section
views. These anatomy options, the controls for the section
views and the main window options are discussed below.

Main dialog
When the application is invoked a top-level dialog is pre-
sented to the user. Before anything can be displayed the
user must select a grey-level 3D image. Currently this must
be formatted as a Woolz image, but converters for many
3D formats are available from the EMAP web site. Once
read in, the bounding box of the 3D voxel image will be
displayed in the main window along with a surface repre-
sentation of the data if available. This 3D view can be
manipulated interactively using the cursor to provide
views from arbitrary orientations and positions.

The menu options of the primary window are:

File
Commands to open image data, save views, save and
restore settings, recent file-list and quit.

View Section
Select a section view through the voxel model. A new win-
dow will display one of the pre-set sections which are
transverse, frontal and sagittal planes if the image model
is appropriately aligned. Each of these can be set to display
views at arbitrary orientations and locations within the
3D volume image.

Anatomy
If the voxel model data is configured with a set of anatom-
ical regions, these can be selected from the menu and dis-
played in the section views. For the EADHB and EMAP
atlases the menu hierarchy corresponds to the HUMAT
and EMAP anatomy ontologies.

3D View
Options to control the 3D visualisation in the main win-
dow, toggle the visibility of 3D surface, bounding box and
intersection lines, display the focus section and selected
anatomy.

Orientation
Preset 3D orientations to provide standard viewing
directions.

Help
On-line help menu.

The 3D view window displays the bounding box of the
opened volume and a transparent view of the embryo
Page 3 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:47 http://www.biomedcentral.com/1471-2105/6/47
surface. This surface is pre-determined and stored in the
visualization toolkit (VTK[19]) format. The 3D rendering
is programmed in Java 3D, the objects (surface and
bounding box) inside the 3D view window can be freely
interactively manipulated with controls (using button
drag) for rotation, translations and zoom (translation
towards the viewer).

If an anatomy hierarchy and associated data files are pro-
vided then an additional window will allow browsing
through the ontology and selection of components for
display both in the section views and the 3D view win-
dow. As for the embryo surface, the surface models are
pre-calculated and stored in VTK format. The data layout

recognized by the JAtlasViewer is described in detail on
the EMAP web-site.

Section views
Each Section View is displayed in its own Section Viewer,
either inside the main window (Microsoft Windows style)
or in an independent external window. Section Viewers
are Java components that can be easily imported into
other applications. The primary viewing control is to
move the view plane-parallel through the image volume
as a form of "digital microtome" with section thickness
determined by the underlying resolution of the 3D image,
i.e. moving the microtome by a single step will move to
the next voxel in the stack. The assumption is that once

JAtlasViewer interfaceFigure 1
JAtlasViewer interface. Screen capture of the JAtlasViewer interface. Top-left: main window with 3D visualisation and anat-
omy tree; RHS: three section views through the data with some high-lighted anatomy; Bottom-left: current list of imported
anatomy.
Page 4 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:47 http://www.biomedcentral.com/1471-2105/6/47
the section orientation has been determined the typical
use will be to explore the volume in this fashion. The sec-
tion position is determined by the "distance" parameter
which is the voxel distance from the fixed point (by
default in the centre of the bounding-box). Section
orientation is selected by setting a number of view-angles.
These control the view-direction which is perpendicular to
the view-plane. We use the standard viewing angles
defined by [20] which are related to the Euler angles of
rotation [21]. Two of the angles determine the view-direc-
tion and the third is rotation around that direction. These
angles can be understood in nautical/aeronautical terms
as pitch, yaw and roll respectively. These viewing controls
are hidden by default.

In addition to the primary view-direction controls there
are options to assist navigation. These are View-mode:
options for automatic roll determination in terms of the
pitch and yaw values.

Fixed-point: select the fixed point used as the centre of
rotation. The effect of setting this is to keep that voxel in
view for all view-directions provided the "distance" is
zero.

Fixed-line: set a second fixed-point and constrain the view
so that both fixed points remain in the section. The effect
of this is to reduce the degrees of freedom to a single
parameter of rotation around the line between the two
points.

The remaining controls for each section view are to set the
feedback options including between section views,
between the section view and the 3D view and to allow
saving of the view and its settings (view parameters). The
within view and between views feedback options are pro-
vided by the "Show" menu. This provides toggle controls
to enable:

• cursor position in the reference image coordinate space
and image grey-value to be displayed,

• line of intersection with section views. If two views inter-
sect then the line of intersection is displayed in the appro-
priate colour,

• anatomy feedback – shows the domain and name of the
anatomical component under the current cursor position,

• visible fixed point,

• visible fixed line.

The 3D view can provide feedback of the viewed sections
in terms of the 3D volume. For most users these are

important aids to understanding the position and direc-
tion of the viewed section. Most publications adhere to a
convention for displaying section images, with this inter-
face it is possible to view section data at any orientation
and direction, i.e. depending on the view-direction the
section may appear "reversed", so positional and direc-
tional feedback is critical. The positional feedback is pro-
vided in a number of forms but all indicate the
intersection of the viewed plane with the bounding-box of
the reference image. The most informative choice is to use
texture mapping to render the grey-level image of the sec-
tion into the 3D view. This is computationally expensive
and so two other options are provided. These use the
intersection polygon between the section plane and
bounding box, either as-is, or filled with solid colour. The
directional feedback is optional and provided by an arrow
displayed in the 3D view.

Anatomy manager
The primary purpose of the JAtlasViewer is to provide an
integrated viewer for 3D atlases. These comprise a grey-
level (or potentially colour) reference image and a set of
domains or regions which are associated with terms in a
text hierarchy. For a geographic atlas these would corre-
spond to the physical geography and the areas associated
with individual countries. The hierarchy would then list
the country names, perhaps under continents and split
into counties. For EADHB and EMAP the reference image
is the voxel reconstruction of the embryo and the domains
are delineated anatomical components. The hierarchy of
terms are the corresponding anatomy ontologies [22,23].
The user can select anatomical terms from the ontology
for display in the section and 3D views. Once selected the
component is handled by the Anatomy Manager (see fig 2)
which controls the display properties visibility and col-
our. The anatomy-manager displays the full component
name, visibility control toggles, colour chooser and a
delete button. This style has been adopted because the
number of possible component selections is large (15–
500 depending on stage) and thus the user requires
detailed control. In addition, although only selected terms
in the anatomical hiearchy have corresponding domains
defined, combinations of domains are generated "on-the-
fly" so that larger scale structures can also be visualized.

The colour chooser button allows the user to change the
colour of an anatomy component using a standard color
chooser dialogue. The change is reflected immediately in
all open Section Views and and the 3D feedback window..

The text field displays the full name of the anatomy com-
ponent. Anatomy components fall into 2 broad hierar-
chies starting either at embryo or extra-embryonic component.
The intervening higher level structures are separated with
"/" (slash) and the final part of the name is capitalised. An
Page 5 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:47 http://www.biomedcentral.com/1471-2105/6/47
asterisk following a name indicates that this is an atomic
component, referred to in the anatomy menu as a
(domain). Anatomical components are selected from the
anatomy menu using a left mouse click. Higher level com-
ponents or structures may also be selected from the
anatomy menu using a right mouse click or a combina-
tion of the shift key and (left) mouse click. The anatomy
name may be scrolled by dragging the mouse left or right
inside the text box.

The visibility toggles select whether a component is dis-
played in the section views and in the 3D feedback win-
dow. This fine control helps the process of analysis and
allows the user to build up a visualization showing all or
parts of the anatomy. The delete is a toggle control which
removes an anatomy component from the table.

Conclusion
3D images are in widespread use in medical and biologi-
cal research and there are a large number of options to
view this data, but many of these are commercial and
expensive, and are architecture and operating system
dependent. More recently atlases and spatially mapped
databases in biomedicine have been developed and whilst
these packages can provide solutions for browsing this

data we believe a simple, free-to-use, open-source and
architecture-neutral solution provides a useful tool for
biological research and teaching. The JAtlasViewer is
intended to fill this requirement. The viewer provides the
browsing functionality to locate and display arbitrary sec-
tions through the data with simultaneous 3D display. The
JAtlasVIewer can also read and display a full anatomy
atlas.

The JAtlasViewer is programmed in Java. The 3D program-
ming technology is Java3D, which is a wrapper to the
OpenGL or DirectX libraries. The Java and Java3D runt-
ime environment are freely available from the Sun Micro-
systems web site and in most systems Java is pre-installed.
These techniques minimize the coding work and develop-
ing time. The file size of the JAtlasViewer is less than 1.5
MB. Java WebStart manages the deployment, installation,
upgrade and launch via a simple click on a html page link
or an icon in the WebStart application. It is portable to
any operating system to which Java has been ported and
is currently available for Windows, Linux, Solaris and Mac
OS.

The JAtlasViewer design is of reusable and extensible com-
ponents. Based on the viewer a 3D tie-point collector for

anatomy manager interfaceFigure 2
Anatomy manager interface. Anatomy key interface to control displayed colour, anatomy component name and visibilility
in the 2D and 3D views.
Page 6 of 7
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:47 http://www.biomedcentral.com/1471-2105/6/47
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

capturing 3D to 3D correspondences, and an atlas viewer
that can also import gene expression data, have been
developed.

Availability and requirements
• Project name: The Mouse Atlas Project

• Project home page: http://genex.hgu.mrc.ac.uk/

• Application download: http://genex.hgu.mrc.ac.uk/
Software/JavaTools/JAtlasViewer/

• Operating system(s): Solaris, Linux, Mac OSX, MS
Windows.

• Programming language: Java, ANSI C.

• Other requirements: Java 1.4, JavaDoc, Java 3D.

• License: GNU GPL

• Any restrictions to use by non-academics: None

Authors' contributions
Authors GF and NB undertook the main Java develop-
ment and implementation, BH and RB develop and main-
tain the Woolz image processing library and BH
implemented the automatic generation of the JNI. DD, JK,
MS and SL all contributed to the design and testing of the
interface and the preparation of the Atlas data for use with
the tool.

Acknowledgements
This work was supported by the National Institute of Health, USA under
the Human Brain Project, (NIMH and NICHD), grant #HD39928-02. The
embryo atlas data was derived from material provided by the Joint MRC-
Wellcome Human Developmental Biology Resource at IHG, Newcastle
upon Tyne.

References
1. Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sørensen J, Bal-

dock R, Davidson D: Optical Projection Tomography as a Tool
for 3D Microscopy and Gene Expression Studies. Science 2002,
296(5567):541-545.

2. Weninger WJ, Mohun T: Phenotyping Transgenic Embryos: A
Rapid 3-D Screening Method Based on Episcopic Fluores-
cence Image Capturing. Nature Genetics 2002, 30:59-65.

3. Streicher J, Donat MA, Strauss B, Spörle R, Müller GB: Computer-
Based Three-Dimensional Visualization of Developmental
Gene Expression. Nature Genetics 2000, 25(2):147-52.

4. Jacobs R, Fraser S: Magnetic Resonance Microscopy of Embry-
onic Cell Lineages and Movements. Science 1994, 263:681-4.

5. Electronic Atlas of the Developing Human Brain [http://
www.ncl.ac.uk/ihg/EADHB/]

6. The Edinburgh Mouse Atlas Project [http://
genex.hgu.mrc.ac.uk]

7. The Bioimage Database [http://www.bioimage.org]
8. µMRI Atlas of Mouse Development [http://mouseat

las.caltech.edu/index.html]
9. ImageJ [http://rsb.info.nih.gov/ij/]

10. Piper J, Rutovitz D: Data Structures for Image Processing in a
C Language and Unix Environment. Pattern Recognition Letters
1985, 3:119-129.

11. javacc [https://javacc.dev.java.net]
12. Java Webstart [http://java.sun.com/products/javawebstart/]
13. CVS [http://www.cvshome.org]
14. JBuilder [http://www.borland.com/jbuilder]
15. Doxygen [http://www.doxygen.org]
16. Java Help [http://java.sun.com/products/javahelp]
17. DreamWeaver [http://www.macromedia.com/software/

dreamweaver]
18. Gamma E, Helm R, Johnson R, Vlissides J: Design Patterns. Addison

Wesley; 1995.
19. VTK [http://public.kitware.com/VTK/index.php]
20. Baldock RA, Dubreuil C, Hill B, Davidson D: The Edinburgh Mouse

Atlas: Basic Structure and Informatics. In Bioinformatics Data-
bases and Systems Edited by: Levotsky S. Kluwer Academic Press;
1999:102-115.

21. Goldstein H: Classical Mechanics. Addison Wesley; 1972.
22. Bard JBL, Baldock RA, Davidson DR: An internet-accessible data-

base of mouse developmental anatomy based on a system-
atic nomenclature. Mechanisms of Development 1998, 74:111-120.

23. Hunter A, Kaufman MH, McKay A, Baldock R, Simmen MW, Bard JBL:
An Ontology of Human Developmental Anatomy. Journal of
Anatomy 2003, 203:347-355.
Page 7 of 7
(page number not for citation purposes)

http://genex.hgu.mrc.ac.uk/
http://genex.hgu.mrc.ac.uk/Software/JavaTools/JAtlasViewer/
http://genex.hgu.mrc.ac.uk/Software/JavaTools/JAtlasViewer/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11964482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11964482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10835627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10835627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10835627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7508143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7508143
http://www.ncl.ac.uk/ihg/EADHB/
http://www.ncl.ac.uk/ihg/EADHB/
http://genex.hgu.mrc.ac.uk
http://genex.hgu.mrc.ac.uk
http://www.bioimage.org
http://mouseatlas.caltech.edu/index.html
http://mouseatlas.caltech.edu/index.html
http://rsb.info.nih.gov/ij/
https://javacc.dev.java.net
http://java.sun.com/products/javawebstart/
http://www.cvshome.org
http://www.borland.com/jbuilder
http://www.doxygen.org
http://java.sun.com/products/javahelp
http://www.macromedia.com/software/dreamweaver
http://www.macromedia.com/software/dreamweaver
http://public.kitware.com/VTK/index.php
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9651497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9651497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9651497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14620375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14620375
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results
	Main dialog
	File
	View Section
	Anatomy
	3D View
	Orientation
	Help

	Section views
	Anatomy manager

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

