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Abstract

We describe a modification to distance based transforms used for non–linear
registration, such as radial basis function transforms, which is both simple
and novel. In the Constrained Distance Transform (CDT), distances are con-
strained to geodesics within the domain of the object being transformed. We
show that the modified method is capable of producing large meaningful de-
formations for both an extreme synthetic case and for real biological image
data. We further show that the method is suitable for interactive use on cur-
rent workstations.

1 Introduction
Spatially mapped databases are becoming increasingly common in biomedical research.
Some of these databases, such as EMAGE [1], contain volumetric models onto which
spatially organised data are mapped through non–linear spatial transformations.

Two connected problems that are frequently encountered when defining these trans-
formations are: Large deformations, such as those required for the pose of limbs or a
curvature in the main body of an object, frequently fail to produce meaningful results;
secondly, very different deformations are frequently required for two regions which are
close in Euclidean space but distant in terms of the object. This last situation is illustrated
in figure 1, in which despite the two points H and T being close in Euclidean space they
are distant in terms of the object being transformed. It is clear that Euclidean geometry
does not provide a good description of organisms with complex shapes and that a nat-
ural coordinate system might be more appropriate. A natural coordinate system can be
defined as a “coordinate system which requires the least residual deformation to explain
variability across individuals” [8]. Defining transformations which will uncurl the object
or deform the head without deforming the tail are not possible using current methods, but
it is just such transformations that are required to establish mappings between the assay
and atlas model images shown later in figure 4.

A feature of the images shown in figure 4 is the variability of the assay images, which
frequently do not correspond in either image values or their gradients. It is clear that, given
the state of existing automatic registration algorithms, some interaction or expert guidance



is required to register the assay images to the atlas if the registration is to generate high
quality mappings.

Existing methods which allow large deformations include articulated and fluid mod-
els. Martı́n-Fernández et al. [4] have developed articulated models for registering hand
radiographs. In these models a skeleton composed of articulated rods is registered using
landmarks at the ends of the rods and displacements away from the rods are interpolated
using weighted combination of affine transforms. These models allow large deformations
but do not appear to be a natural model for objects that do not have rigid components and
in such cases a large number of articulated components might be required to achieve a
reasonable transformation. Fluid models based on solving viscoelastic systems have been
developed for registration with large deformations. While these models are often success-
ful in producing large deformations, they are computationally expensive, non–interactive
and do not always give biologically meaningful results: ”Hands and brains do not in
general deform like honey”[5].

Radial basis function (RBF) transforms are well suited to interactive use and are fre-
quently used successfully for defining transforms with small deformations. But unfortu-
nately these transforms do not behave well for large deformations or for large deformation
gradients and even for smooth transformations they may not give diffeomorphic mappings
[5].

In this paper we propose a simple modification to RBF transforms which allows them
to be used interactively to produce high quality mappings for large deformations on com-
mon desktop workstations.

Figure 1: From left to right: Volume rendering showing points in the head (H) and tail (T),
diagram showing the path for the constrained distance between H and T, distance trans-
form showing the distance of all points in the domain from H. In the distance transform
image the distance values have been normalised to the range 0 (black) to 255 (white) for
clarity.

2 Radial Basis Function Transforms
Because of the difficulty in computing warp transformations automatically, RBF trans-
forms based on manually or semi–manually defined landmark points are frequently used
in biomedical applications. These manually defined landmarks can be combined with au-
tomatically generated landmarks through various weighting schemes. It is also possible



to combine landmark based registration with intensity based registration [3]. Landmark
points give the set of displacements between the defined coordinates of the point pairs,
but to achieve a warp transformation it is necessary to have a displacement function that
is defined for all points within the domain of the source object. RBF transforms, in which
the displacement at any point is given by the sum of weighted functions of the radial
distances from the landmark points, are frequently used in this role.

Given a source object Os(x,y) and a target object Ot(u,v), the displacements ∆u and
∆v defined by

∆u = u− x (1)
∆v = v− y (2)

can be computed using a RBF transform with the general form

∆u = Pu(x,y)+
i=N

∑
i=1

λib(ri) (3)

∆v = Pv(x,y)+
i=N

∑
i=1

µib(ri) (4)

where Pu and Pv are two first order polynomials (the affine component), N is the number
of landmark points, λi and µi are the basis function coefficients and b is the chosen basis
function. In these equations ri is the distance of some point p(x,y) from landmark point
li.

Two frequently used basis functions are the thin plate spline (TPS) and the multi-
quadric (MQ), which in 2D have the form

bT PS(r) = r2lnr2 (5)

bMQ(r) =
√

r2 +δ 2. (6)

The value of the MQ regularisation parameter δ is chosen so as to balance the smooth
variation in displacements against exact landmark point displacements. This parameter is
application dependent, but in practise it can be computed using a simple algorithm [2].

From a set of landmark points a system of linear equations may be written using the
coefficients of the polynomial (Pu or Pv) and the RBF (λi or µi). These equations, known
as the design equations, may then be solved using a linear system solver such as singular
value decomposition. In practise it is often beneficial to rescale the parameters to reduce
the condition number of the design matrix [2].

3 Distance Transforms
A distance transform maps a set of points within some domain of interest to their distance
from a reference domain. Most distance transform algorithms assume a single rectangular
(or at least convex) domain of interest, but in this work no such restriction is imposed
and both the domains may be non–convex. In this more general case, the distances are
evaluated along geodesics that are restricted to the domain of interest.

The distance transform algorithm used is based on a region growing algorithm de-
scribed by Piper and Granum [7], but which has been implemented using efficient mor-
phological primitives based on interval coding [6]. Given two domains, Ωr the reference



domain and Ω f the domain specifying the region of interest, a domain with a thin shell Ωi
is iteratively expanded from it’s initial domain corresponding to the reference domain Ωr.
At each iteration Ωi is dilated and clipped by it’s intersection with Ω f until Ωi becomes
the null domain /0. At each iteration the current distance is recorded in a value table which
covers the domain Ω f . This is shown in algorithm 1. To approximate Euclidean dis-
tances, the domains are rescaled using a scale parameter and dilation is performed using
a circular structuring element with a radius equal to the scale parameter. This rescaling is
relatively efficient because the morphological primitives are based on interval processing
and the number of intervals increases with a domain’s linear dimension not it’s area.

Algorithm 1 Distance Transform.
Require: Ω f ,Ωr

1: c← initial connectivity
2: s← 0
3: Vd ← new integer value table with domain Ω f
4: Ωi←Ωr
5: while Ωi 6= /0 do
6: s← s+1
7: Ωp←Ωi
8: Ωi← diffdom(Ωp,dilation(Ωp,c))
9: Ωd ←Ωi∩Ω f

10: Vd |Ωd ← s
11: end while

4 Constrained Distance Transforms
RBF transformations are relatively easy to implement and are well suited for interactive
use. But in practise there are many situations in which they fail to produce useful trans-
formations, such as where large deformation gradients are required.

In this paper we propose that a solution to the problem of interactively registering
images with large deformations can be found through reconsidering the distances used by
the RBFs (and other distance based transforms) and constraining the paths along which
the distances are evaluated to be geodesics that lie within the domain of the source object.
With regard to figure 1, it is clear that the head and tail are close in Euclidean space and
that any landmarks which create a large displacement for the head will result in a similar
displacement for the tail. However if the path along which this distance is measured is
constrained to a geodesic within the object’s domain, then the head is far from the tail
despite it’s being close in Euclidean space. By using distances constrained to the source
object’s domain, large displacements applied to the head may be effectively independent
of those applied to the tail. All that is required is to substitute constrained distances in
place of all Euclidean distances in the RBFs. We call this transformation the Constrained
Distance Transform (CDT).

When evaluating the displacement of the source domain at some point pi, using RBFs
defined using landmarks {l j}, then all distances between pi and l j must be computed for
all i and j. Because constrained distances are considerably more expensive to compute



than Euclidean distances efficiency gains can be made by caching the the distance trans-
forms, with one distance transform cached per landmark pair. Using this approach the
cached distance transforms may be created and destroyed incrementally in step with the
interactively defined landmark points.

In this work the transformation of both object domains and values are accomplished
using non–regular triangulated conforming meshes. The use of conforming meshes sim-
plifies image re–sampling in situations, such as limb articulation, which would otherwise
give rise to large mesh element deformations requiring complex re–meshing schemes.
Objects are transformed by first defining a mesh covering the source domain. This mesh
then has a displacement, computed by evaluation of the radial basis function transform,
associated with each of it’s nodes. The mesh is first used to forward transform the source
object’s domain and then, if the source object has values associated with it, a new value
table is created for the transformed domain and the new values are set using a sweep–line
algorithm which scans through the transformed domain setting it’s values from the source
object via the current mesh element’s inverse transform.

5 Results
An initial 2D implementation of the CDT has been evaluated using both synthetic and
real biological images. In all cases a multiquadric RBF was used and the approximate
Euclidean distance transform scale factor was set to 10.0.

A pair of synthetic images was generated corresponding to a large deformation prob-
lem which is known to be problematic for unconstrained RBFs [5]. These images are
shown in figure 2. The ‘C’ image has a domain that is an incomplete annulus, with radii
of 100 and 200 pixels and a gap sector of 30◦. The ‘I’ image is an axis aligned rectangle
with dimensions 100 × 800 pixels. Eighteen landmark pairs were computed for the C
and I images during their generation and these were used to transform both the C to the
I and the I to the C images using a CDT. The resulting images clearly show that CDTs
are capable of registering objects requiring large deformations. that are problematic for
unconstrained RBFs.

An assay image was selected from the EMAGE database in which the head and tail are
close in Euclidean space. The image was segmented from its background using interactive
grey value thresholding combined with connected component labelling. Landmark points
were then evenly distributed around the segmented image, with all the landmarks having
zero displacements except for those in the tail which had a displacement set away from the
head. Figure 3 shows this image together with the landmark points and the displacements
set. This figure also shows the results of applying a CDT and an unconstrained RBF
transform to the image. When a CDT was applied, the head was not subjected to any
significant deformation despite the large deformation experienced by the tail. However
the unconstrained RBF transform resulted in large deformations to both the head and the
tail. In both cases the same landmarks and displacements were used.

Figure 4 shows a set of eight typical 2D assay images from a set of submissions to
the EMAGE database. This figure also shows a 2D projection of the corresponding 3D
atlas model. These images display the typical variation that is seen in both the pose of
the organisms and in their image values. Unconstrained RBF transforms are unable to
map the assay images onto the atlas image satisfactorily. Attempts to do so result in folds



of the source image and a confused image in which multiple foreground regions may be
blended with background. All assay images were first segmented from their background
using interactive grey value thresholding combined with connected component labelling
and any extraneous parts (such as the allantois) were removed. The segmented images
were then mapped to the 2D atlas image interactively using CDTs, with the landmarks
being placed at plausible correspondences. Figure 5 shows the successfully mapped assay
images together with the target atlas image. For these images the number of landmark
pairs used varied between 31 and 45.

In it’s current implementation, the CDT computation time is dominated by the time
taken to compute the distance transforms, with this accounting for approximately 99% of
the total computation time. To compute the approximate distance transform, in which all
distances from a single landmark are computed within the domain of the C image (outer
diameter 400 pixels), takes 2.1s in the worst case on a 2.2GHz Opteron CPU using the
approximate Euclidean distance transform with a scale factor of 10.0. This is the time
delay between a user entering a landmark pair and seeing the displaced image computer.

6 Conclusions
RBF transforms defined using landmarks points are easily implemented and are frequently
used for interactive non–rigid registration, however it is well known that these functions
often fail to produce satisfactory warps for large deformations. A novel modification of
the method has been presented which makes use of constrained distances. The CDT has
been shown to produce meaningful results for a synthetic dataset that is known to be prob-
lematic for the unmodified method. It has also been shown to be capable of decoupling
the displacements of regions that are close in Euclidean space, provided that an adequate
segmentation can be achieved. Further, the CDT has been shown to produce satisfactory
mappings, requiring large deformations, between biological assay images and a standard
atlas model.

The computational cost of the approximate distance transforms currently restricts the
size of image that can be transformed interactively. With one distance transform being
computed for each landmark pair, the source is limited to 2D objects of a few hundred
pixels in each dimension, such as the C image. Although it is possible to use a lower scal-
ing factor in the approximate Euclidean distance transform, this results in a lower quality
mapping which may be unacceptable. One method of making the method interactive,
even for 3D data, is to map the atlas to the assay image, using landmarks fixed in the atlas
image and pre–computed distance transforms. The resulting transform can then easily be
inverted with mesh based implementations.

Future developments will include the addition of compact RBFs and the extension of
the work to 3D transformations.
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Figure 2: C and I dataset. Counter clockwise from the left: I object, C object showing the
positions of the landmark points, overlay of the C object warped to the I, overlay of the I
object warped to the C.



Figure 3: From left to right: Source image (from EMAGE) showing fixed points and
displacements, source image transformed using a CDT and source image transformed
using an unconstrained RBF transformation.

Figure 4: EMAGE TS12 dataset: Outer images are assay images to be mapped to an atlas
image (centre).



Figure 5: EMAGE TS12 dataset: Outer images are the registered assay images mapped
to an atlas image (centre).


